OPTIMAL DESIGN OF GRAVITY DAM USING DIFFERENTIAL EVOLUTION ALGORITHM

Authors

  • C.R. Suribabu
  • R. Deepika
Abstract:

The shape optimization of gravity dam is posed as an optimization problem with goals of minimum value of concrete, stresses and maximum safety against overturning and sliding need to be achieved. Optimally designed structure generally saves large investments especially for a large structure. The size of hydraulic structures is usually huge and thus requires a huge investment. If the optimization techniques are employed in the design stage, the project investment can be effectively minimized. There are many optimization techniques were used to optimize the gravity dam. In the present work, optimization of gravity dam is carried out using the differential evolution technique. Differential evolution is an evolutionary algorithm which process iteratively to locate best solution in the large search space. Searching of optimal solution to a problem is carried out by the process of mutation, cross over and reproduction from the initial developed candidate solutions. After undergoing a number of iterations, it is possible to get the minimum cross sectional area of dam which can satisfy various constraints and thus the reduction in volume of concrete can be achieved. From the results obtained, it is found that differential evolution is one of the efficient techniques for solving such a problem over continuous space. The success of differential evolution in solving a specific problem critically depends on appropriately choosing trial vector generation strategies and their associated control parameter value. The optimum solution obtained is compared with analytical method and it is found that there is 20.44 % of reduction in the requirement of concrete is envisaged.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

OPTIMAL DESIGN OF CANTILEVER RETAINING WALL USING DIFFERENTIAL EVOLUTION ALGORITHM

Optimal design of cantilever reinforced concrete retaining wall can lead considerable cost saving if its involvement in hill road formation and railway line formation is significant.  A study of weight reduction optimization of reinforced cantilever retaining wall subjected to a sloped backfill using Differential Evolution Algorithm (DEA) is carried out in the present research.  The r...

full text

optimal design of cantilever retaining wall using differential evolution algorithm

optimal design of cantilever reinforced concrete retaining wall can lead considerable cost saving if its involvement in hill road formation and railway line formation is significant.  a study of weight reduction optimization of reinforced cantilever retaining wall subjected to a sloped backfill using differential evolution algorithm (dea) is carried out in the present research.  the retaining w...

full text

Pareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm

The present paper aims to improve the dynamical balancing of a slider-crank mechanism. This mechanism has been widely used in internal combustion engines, especially vehicle engines; hence, its dynamical balancing is important significantly. To have a full balance mechanism, the shaking forces and shaking moment of foundations should be eliminated completely. However, this elimination is usuall...

full text

Optimal IIR Filter Design using Differential Evolution Algorithm

Digital filter is mathematical algorithm that operates on discrete time signals. Different optimization algorithms can be utilized to determine the impulse response of coefficient of such a filter. Optimization problems for the design of digital filters are often complex, highly nonlinear, and multimodal in nature. The problems usually exhibit many local minima. Ideally, the optimization method...

full text

Pareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm

Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...

full text

Well Placement Optimization Using Differential Evolution Algorithm

Determining the optimal location of wells with the aid of an automated search algorithm is a significant and difficult step in the reservoir development process. It is a computationally intensive task due to the large number of simulation runs required. Therefore,the key issue to such automatic optimization is development of algorithms that can find acceptable solutions with a minimum numbe...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 3

pages  255- 266

publication date 2015-08

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023